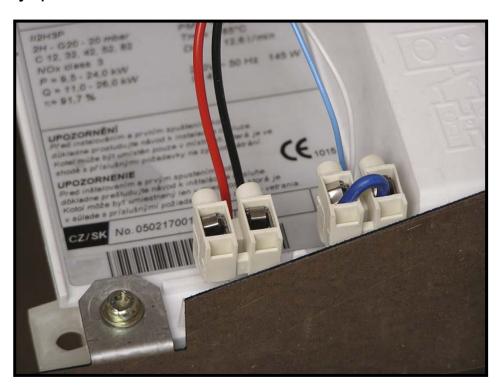


Tiger v.17/Тигр 24 (12) KTZ 24 (12) KOZ

Основные характеристики котла



- Плавное изменение мощности
 (12 KXZ 3,5 − 11,5 кВт, 24 KXZ 9,2 − 23,7 кВт)
- Растопка от электрической искры
- Встроенный эквитермный регулятор
- Встроенный накопительный бак ГВ45л
- Интеллигентное управление подготовкой ГВ SPIN систем
- Управление работой котла с помощью двух микропроцессоров
- Автодиагностика
- Повышенная степень защиты
- Выбег насоса
- Встроенный наполнительный вентиль для пополнения отопительной системы
- Интегрированный выпускной вентиль для накопителя ГВ
- Интегрированный расширительный бак для накопителя ГВ
- Таймер для накопительного бака ГВ
- Утопленные входы и выходы ОВ, газа и ГВ
- 3-скоростной насос
- Противоморозная защита котла
- Антициклическая защита
- Защита от перегрева

Заводской щиток

Все необходимые данные о котле можете найти на заводском щитке, который расположен на задней части панели управления.

Накопительный бак для горячей воды

Уникальная система SPIN

В котле находится встроенный 45-литровый накопительный бак для горячей воды, покрытый двойной смальтой и оснащенный защитным магниевым электродом.

- Существенное повышение комфортабельности при подготовке горячей воды предоставляет так называемая система SPIN. Принцип ее действия основан на турбине,
- генерирующей импульсы, частота которых пропорциональна расходу горячей воды.
 - В отличие от первоначального двухпозиционного датчика,
- который не мог определить объем расхода, с помощью турбинки можно измерить расход горячей воды во всей системе.

Регуляция горячей воды, в таком случае, намного **быстрее и точнее.** Потому что изменение мощности котла можно производить еще перед достижением относительно медленного изменения величины на терморегуляторе.

Накопительный бак, оснащенный системой SPIN, таким образом, не ожидает снижения температуры воды, а предварительно и динамично его подогревает в соответствии с объемом расхода.

Принцип системы SPI

Система управления горячей водой, оснащенная модулем SPIN, руководствуется информацией, полученной от трех датчиков: датчика Галла — турбинки, датчика ГВ в накопительном баке, датчика ОВ

Уровень 1: Если расход горячей воды больше 2 л/мин, котел не начнет нагревать, пока температура в накопительном баке не будет менее 2 °С. Если так случится, котел зажжет горелку и подогреет накопительный бак точно до установленной пользователем температуры.

Уровень 2: Если же расход горячей воды будет больше 2,5л / мин, то котел зажжет горелку и подогреет накопитель до температуры, на 4 °C превышающей установленную пользователем.

Уровень 3: При расходе более 8л / мин котел зажжет горелку немедленно, без ожидания на отобранные литры и снижение температуры в накопительном баке. Температура в накопительном баке может превышать наставленную пользователем температуру почти на 8 °C.

С помощью такой системы управления получится точно такое же количество воды,

как и в накопительном баке большего объема

Технические параметры 24 KTZ / 12KTZ

Параметры	24 KTZ ZP / PB	12 KTZ ZP / PB			
Категории	II _{2H3P}				
<u>Б</u> Изготовление	C ₁₂ , C ₃₂ , C ₄₂ , C ₅₂ , C ₆₂ , C ₈₂				
Изготовление Макс.получ.тепловая мощность (кВт)	26 / 25		12,5 / 10		
	11 / 10,5		4 /4		
Мин. получ.тепловая мощность (кВт) Макс.тепловая мощность (кВт) Мин. тепловая мощность (кВт) КПД (%) Расход газа (Q max) Расход газа (Q min) Степень защиты	24 / 22,5		11,5 / 9		
Б Мин. тепловая мощность (кВт)	9,5 / 9	9,5 / 9 3,5			
8 КПД (%)	91,7 / 90,5		91 / 91		
Расход газа (Q max)	2,7 [м³/ч] / 2,1 [кг/ч]	1,3	4 [м³/ч] / 0,8 [кг/ч]		
расход газа (Q min)	1,1 [м³/ч] / 0,9 [кг/ч]	0,45	5 [м³/ч] / 0,34 [кг/ч]		
Степень защиты	IP 45				
g Эл.классификация*	1				
[®] Эл.ток (A)	0,6				
Мощность (Вт)	120				
Вес котла без воды (кг)	71		70		
Эл.классификация* Эл.ток (А) Мощность (Вт) Вес котла без воды (кг) Размеры (в / ш / г) Уровень шума (дв)	900 / 410 / 570				
б Уровень шума (дв)	до 55				

4

Technické parametry 24 KOZ / 12KOZ

Параметры	24 KOZ ZP / PB		12 KOZ ZP / PB		
Категории	II _{2H3P}				
Изготовление	B _{11BS}				
Макс.получ.тепловая мощность (кВт)	25,5 / 25		12,5 / 10		
Мин. получ.тепловая мощность (кВт)	11 / 10,5		4 /4		
Макс.тепловая мощность (кВт)	23,5 / 22,5		11,5 / 9		
Мин. тепловая мощность (кВт)	9,5 / 9	3,5 / 3,5			
КПД (%)	90,7 / 90	91 / 91			
Расход газа (Q max)	2,7 [м³/ч] / 2,1 [кг/ч]	1,3	1,34 [м³/ч] / 0,8 [кг/ч]		
Расход газа (Q min)	1,1 [м³/ч] / 0,9 [кг/ч]	0,4	5 [м³/ч] / 0,34 [кг/ч]		
Степень защиты	IP 45				
Эл.классификация*	1				
Эл.ток (А)	0,5				
Мощность (Вт)	95				
Вес котла без воды (кг)	70		69		
Размеры (в / ш / г)	900 / 410 / 570				
Уровень шума (дв)	до 55				

*бытовой прибор 1 класса

Параметры

Параметры – прохождение газа	24 KOZ / 24 KTZ ZP / PB	12 KOZ / 12 KTZ ZP / PB		
Входящее давление газа (мбар)	20 / 37			
Давление на форсунках мин. (мбар)	2,2 / 7	1,6 / 10		
Давление на форсунках макс. (мбар)	12,2 / 35,7	14,2 /30		
Диаметр форсунок (мм)	1,2 / 0,7	1,2 / 0,73		

Параметры – отопления (ОВ)	24 KOZ / 24 KTZ	12 KOZ / 12 KTZ			
Макс.рабочее давление (бар)	3				
Мин.рабочее давление (бар)	0,8				
Рекомендуемое рабочее давление (бар)	1,2 - 2				
Диапазон температур (°C)	45 - 85				
Расширительный бак (л)	8				
Максимальное количество ОВ в системе при 70 °C (л)	100				
Макс.давление в расширительном баке (бар)	3				

Параметры

Parametry – teplá voda (TV)	24 KOZ / 24 KTZ	12 KOZ / 12 KTZ			
Входящее давление газа (мбар)	6				
Давление в горелках мин. (мбар)	1				
Мин.расход ГВ (л/мин)	2,	7			
Наставительный диапазон температур (°C)	38 - 70				
Количество используемой ГВ (согласно ЧСН ЕН 625) л/мин	12,6	8,2			
Расширительный бак (л)	2				
ОГВод продуктов сгорания	24 KOZ	12 KOZ			
Способ	через дымоход				
Температура продуктов сгорания (°C)	95 - 120				
Мин. постоянная тяга дымохода (Ра)	2				
Объемный расход прод.сгорания (г/с)	20	16			
Диаметр горловины отвода продуктов сгорания (мм)	130	110			
ОГВод продуктов сгорания	24 KTZ	12 KTZ			
Диаметр отдымления (мм)	100/60, 80/80				
Макс.длина отдымления 60/100	7				
Макс.длина отдымления 80/80	14				
Температура прод. сгорания (°C)	115 -145				
Объемный расход прод.сгорания (г/с)	18 15				

*ГВ – горячая вода, ранее обозначенная ГВ – горячая вода для хозяй нужд

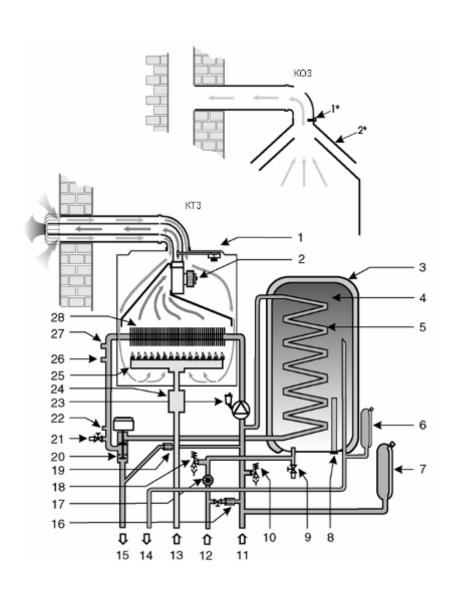
Защитные функции котла

Защита от низких температур

В котле имеется встроенная защита против низких температур, которая защищает котел (нив коем случае отопительную систему или распределительную систему ГВ) перед замерзанием. При снижении температуры отопительной воды на уровень ниже 4 °С произойдет включение котла, несмотря на требования комнатного регулятора или настройку управления ОВ на позицию «солнышко». В случае, если температура отопительной воды в котле достигнет 8 °С, котел автоматически выключится.

Защита насоса

Посредством короткого включения насоса (приблизительно на 30 с), который 24 часа непрерывно находился в состоянии покоя, обеспечивается его защита против блокированию при длительном перерыве в работе.


Антициклирование

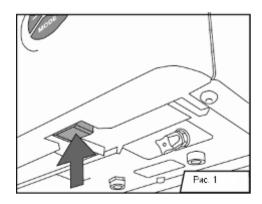
Антициклическое ограничение в режиме отопления, когда после отключения котла не разрешается его повторное зажигание раньше, чем панель управления на основе разницы между требуемой и действительной температурой ОВ определит время, когда котел опять может начать работать. Этот промежуток времени находится в интервале от 1мин 30 с до 5 мин. Эта функция больше всего используется в системах отопления в случае, когда максимальная потеря тепла данного объекта соответствует самой низкой границе диапазона мощности котла.

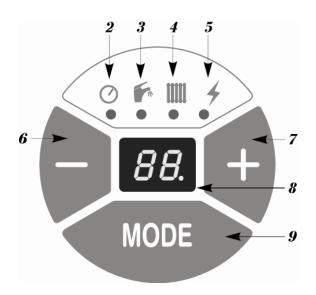
Предупреждение: Все защитные функции активизированы только тогда, когда котел присоединен к электрической сети (Вилка электрического кабеля засунута в розетку, а главный выключатель находится в положении «включено» (I).

Рабочая схема котла

- 1*. Термостат продуктов сгорания / 1. Маностат воздуха
- 2*. Прерыватель тяги / 2. Вентилятор
- 3. Изоляция накопительного бака ГВ
- 4. Накопительный бак для ГВ
- 5. Теплообменник ГВ
- 6. Расширительный бак для ГВ
- 7. Расширительный бак для ОВ
- 8. Анод
- 9. Сливной клапан ГВ
- 10. Предохранительный клапан
- 11. Вход ОВ
- 12. Вход ГВ
- 13. Вход газа
- 14. Выход ГВ
- 15. Выход ОВ
- 16. Клапан для дополнения ОВ + обратный клапан
- 17. Датчик расхода горячей воды
- 18. Защитный клапан для горячей воды
- 19. Байпас
- 20. 3-х ходовой двигательный клапан
- 21. Выпускной клапан для отопительной воды
- 22. Датчик давления
- 23. Hacoc
- 24. Газовый клапан
- 25. Hořák
- 26. Датчик температуры горячей воды
- 27. Аварийный термостат
- 28. Теплообменник отопительной воды

Управление котлом 1


(на уровне пользователя)


- Режим считывания
- Режим настройки
- Режим сервиса

Панель управления

- 1. Главный выключатель предназначен для включения или выключения котла, одновременно выполняет и функцию кнопки RESET (выключение а включение котла через короткий промежуток времени).
- 2. Индикатор давления отопительной воды (сообщение о ошибках, касающихся давления OB).
- 3. Индикатор режима изображений или настройки температуры горячей воды для хозяйственных нужд.
- 4. Индикатор режима изображения или настройки температуры отопительной воды.
- 5. Индикатор сообщений о ошибках.
- 6. Кнопка уменьшения значения регулируемого параметра.
- 7. Кнопка увеличения значения регулируемого параметра.
- 8. Дисплей изображение значений давления, температуры, технических параметров а сообщений о ошибках.
- 9. Кнопка MODE переключение в отдельные режимы отсчета и регулирования значений, подтверждение установленных значений.

Режим считывания

Изображение температуры отопительной воды

После запуска котла с помощью главного выключателя на дисплее появится изображение актуальной температуры ОВ. Это состояние отображается посредсстом светодиода и символа *радиатор*. Светодиод **светится**.

Изображение температуры горячей воды

Для изображения температуры горячей воды ГВ нажмите кнопку (+) — диод и символ «водопроводный кран» светятся. Если на дисплеи за числовым значением мигает точка, значит было идентифицировано требование нагрева накопителя горячей воды. Для обратного изображения температуры горячей воды необходимо нажать кнопку (+).

Изображение давления отопительной воды

Нажмите кнопку **mode**, значение давление (бар) отопительной воды, циркулирующей в системе, на 30 с появится на дисплеи – одновременно **рассветится** светодиод.

Предупреждение о снижении давления воды в отопительной системе

При снижении давления воды в системе отопления ниже значения 1 Бар или повышении значения более 2,5 Бар — *мигает* светодиод у символа «*указатель*». Котел постоянно работает, необходимо поднять давление до рекомендуемого значения 1 – 2 Бар.

Установка температуры горячей воды

Нажмите кнопку MODE несколько раз, пока возле символа «водопроводный кран» не начнет мигать светодиод. Нажатием кнопки + или – установите требуемое значение температуры ГВ. Диапазон настройки: 38, 39, 40, 41, 42, 45, 50, 55, 60, 65, 70°C. Для окончания нагрева ГВ установите параметр (--).

Последующим нажатием кнопки MODE значение параметра будет сохранено.

Установка температуры отопительной воды

Нажмите кнопку MODE несколько раз, пока возле символа «радиатор» не начнет мигать светодиод. Нажатием кнопки + или — установите требуемое значение температуры отопительной воды. Диапазон настройки: --, 38, 40, 42, 45, 50, 55, 60, 65, 70, 75, 80°C. Для окончания нагрева (режим ЛЕТО) установите параметр (--).

Последующим нажатием кнопки MODE значение параметра будет уложено.

Установка эквитермной кривой отопительной воды OB – крутизны кривой

Нажмите кнопку **mode** несколько раз, пока на дисплеи не появится буква Е со значением от 0 до 9. Выбор погодной характеристики осуществите с помощью кнопки + или - . Крутизна кривой растет в соответствии с установленным значением (E0 < E9), см. граф.

Ввод в память и одновременно переход на параметр "Р" осуществляется нажатием кнопки **mode**.

Примечание: Для использования режима регулирования в соответствии с погодными условиями необходимо подключить наружный датчик, котел при этом не должен работать в режиме ЛЕТО (LÉTO).

Предупреждение: После подключения внешнего датчика котел подогревается в течение 1 часа до максимальной температуры. В течение этого времени все установленные параметры игнорируются, кроме показаний комнатного регулятора (если он подключен).

Установка смещения эталонной температуры

Пока предыдущий параметр "Е" был подтвержден кнопкой **mode**, на дисплеи появится параметр "Р"с величиной от 0 до 9. При помощи кнопок + или – выберите смещение эталонной температуры (см. граф, таблицу 1). Соответствующие величины эталонной температуры - параметра "Р" показаны в таблице 1. Для первоначальной настройки выберите параметр Р5, который в соответствии с таблицей 1 отвечает величине внешней температуры 15 °С (см. граф на рис. 4).

Примечание: При достижении эталонной температуры котел далее подогревает воду в отопительной системе до минимальной температуры (38 °C), пока внешняя температура не возрастет на следующие 3 °C, потом будет подогрев отопительной воды выключен (см. табл. 1 – температура выключения).

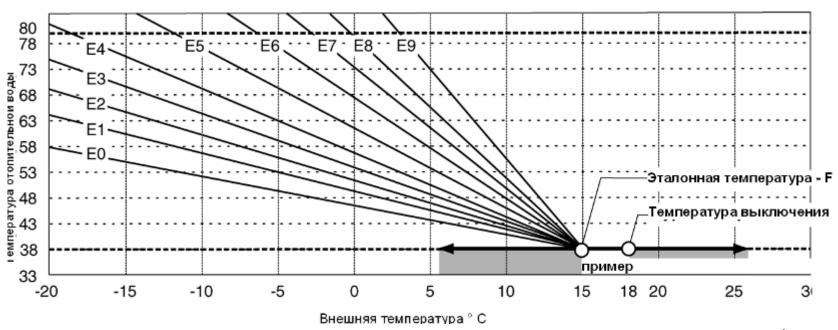


Таблица 1

"Р" параметр	0	1	2	3	4	5	6	7	8	9
Эталонная температура °C	6	7	9	11	13	15	17	19	21	23
Температура выключения °C	9	10	12	14	16	18	20	22	24	26

Пример выбора эквитермной кривой

Существует объект, о котором нам известно, что при внешней температуре -10 °C отопительную систему необходимо нагревать до 70 °C. Если посмотрим на граф и соединим приведенные данные с помощью кривой, то лучше всего нам подойдет эквитермная кривая E4.

Точно также необходимо оценить, подойдет ли нам **эталонная температура** – параметр "Р" (см. граф). Вместе с **температурой выключения** (см. граф) она создает температурное пасмо, с которого начинается или, наоборот, заканчивается нагревание отопительной воды.

Если в качестве примера возьмем ситуацию из приведенного графа, то потом нам больше всего подходит параметр "Р" с величиной 5, потому что эталонная температура оканчивается на 15 °C (внешняя температура). Котел после достижения этого уровня продолжает далее подогревать до минимальной температуры (38 °C), пока внешняя температура не достигнет значения 18°C. Потом котел выключится и будет ждать снижения внешней температуры ниже 18 °C.

Примечание: Нужно помнить, что при установке – перемещении параметра "Р" одновременно возникают частичные изменения крутизны отопительной кривой "Е". Изменение рассчитанной температуры более всего ощущается при приближении кривой к эталонной температуре.

Настройка интервалов подогрева накопительного резервуара

У котлов Tiger существует возможность настройки подогрева горячей воды в накопительном резервуаре в различные интервалы времени.

Пример: Если в течение ночи не происходит отбор горячей воды для хозяйственных нужд, то существует возможность отключить или, наоборот, включить с помощью коммутационного счетчика подогрев воды на определенный период времени.

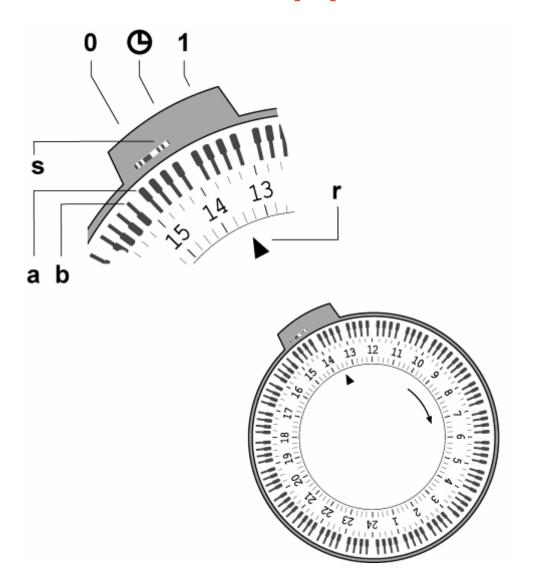
Коммутационные счетчики по внешнему обводу оснащены переключателями, при помощи которых можно определить коммутационный цикл дозарядки накопительного резервуара. Если ножка переключателя находится в отдалении от циферблата (см. рис., поз. а), то дозарядка накопительного бака является на данный момент активной и наоборот (см рис., поз. b).

При помощи переключателя (см. рис., поз. s), находящегося над левой стороной циферблата, можно выбрать 3 постоянные режимы. Режим "0" предназначен для постоянного отключения подогрева накопителя ГВ. Позиция "1" предназначена для постоянного подогрева накопительного резервуара ГВ. Если переключатель находится в позиции, обозначенной символом часов (среднее положение), то режим подогрева накопительного бака устанавливается в соответствии с Вами наставленными параметрами, т.е. на основе позиций отдельных переключателей.

Примечание: Аннулирование или активацию подогрева воды в накопительном баке можно производить посредством дисплея управления котлом (см. установку температуры ГВ).

Настройка коммутационных счетчиков с точки зрения временной синхронизации производится с помощью поворота внешней части циферблата вправо, пока напротив стрелки не будет установлено правильное время.

Установка интервалов подогрева накопительного резервуара – коммутационный счетчик


У котлов Tiger существует возможность настройки подогрева горячей воды в накопительном резервуаре в различные интервалы времени.

Пример: Если в течение ночи не происходит отбора горячей воды для хозяйственных нужд, то существует возможность отключить или, наоборот, включить на определенный период времени подогрев воды с помощью коммутационного счетчика. Коммутационные счетчики по внешнему обводу оснащены переключателями, при помощи которых можно определить коммутационный цикл дозарядки накопительного резервуара. Если ножка переключателя находится в отдалении от циферблата (см. рис., поз. а), то дозарядка накопительного бака является на данный момент активной и наоборот (см рис., поз. b).

При помощи переключателя (см. рис., поз. s), находящегося над левой стороной циферблата, можно выбрать 3 постоянные режимы. Режим "0" предназначен для постоянного отключения подогрева накопителя ГВ. Позиция "1" предназначена для постоянного подогрева накопительного резервуара ГВ. Если переключатель находится в позиции, обозначенной символом часов (среднее положение), то режим подогрева накопительного бака устанавливается в соответствии с Вами наставленными параметрами, т.е. на основе позиций отдельных переключателей. Примечание: Аннулирование или активацию подогрева воды в накопительном баке можно производить посредством дисплея управления котлом (см. установку температуры ГВ).

Настройка коммутационных счетчиков с точки зрения временной синхронизации производится с помощью поворота внешней части циферблата вправо, пока напротив стрелки не будет установлено правильное время.

0 – остановка подогрева ГВ

Символ часы – подогрев ГВ зависит от настройки переключателей

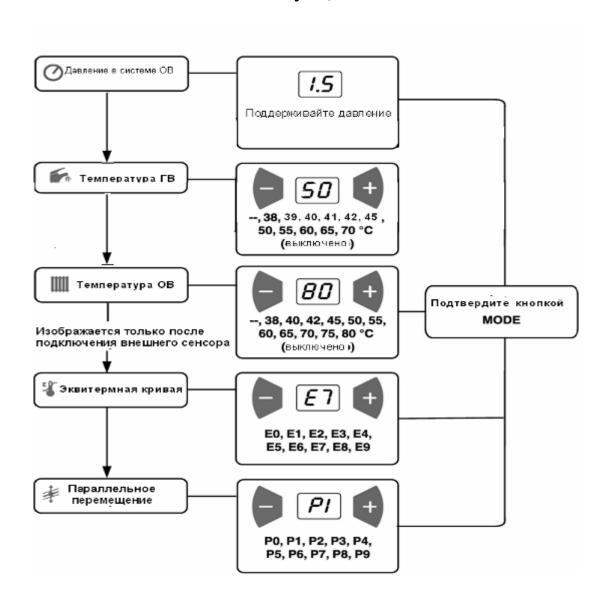
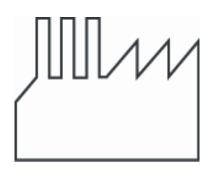

- 1 постоянный нагрев ГВ
- s переключатель выбора нагрева
- а позиция переключателя для активного нагрева ГВ на данном отрезке времени
- b позиция переключателя для отключения нагрева ГВ на данном отрезке времени
- r ориентировочная стрелка для выверки часов

Схема управления котлом


Кнопка MODE

Функции

Настройка изготовителем

ΓB: 50°C

OB: 60°C

Выбег насоса: в соответствии с показаниями

комнатного регулятора

Мощность для системы отопления: 15 (8) кВт

Потеря давления в отопительной системе - F0

Произошло снижение давления отопительной воды в котле / системе. Давление находится на уровне 0,7 бар. Работа котла автоматически остановлена — мигают светодиоды возле символов **индикатор** и **молния**. После повышения давления котел по требованию возобнови свою работу.

- 1. давление отопительной воды в котле / системе
- 2. датчик давления или систему кабелей
- 3. плату управления котлом

Исчезновение пламени - F1

Пламя погасло в результате прекращения подачи газа к котлу – возле символа "молния" мигает светодиод

- 1. Аварийный термостат или его главный выключатель (reset)
- 2. Подачу газа в котел
- 3. Настройку мощности котла (нижняя граница мощности не соответствует предписанному значению)
- 4. Расстояние между наконечником запальных электродов и кабелями, ионизационным электродом и кабелем.
- 5. Трансформатор зажигания
- 6. Газовый клапан
- 7. Автоматику управления

Неисправность датчика OB - F2

Датчик температуры OB OV разомкнут или произошло короткое замыкание. Работа котла остановлена – возле символа "молния" мигает светодиод

Проверьте:

- 1.Сопротивление датчика
- 2. Присоединительный кабель, идущий от панели управления к датчику

1.Перегревание котла - F3

Котел на короткое время перегревается (температура более 93 °C). После охлаждения функция котла возобновляется в зависимости от заданных условий (температуры ОВ и ГВ, показаний комнатного регулятора).

- Фильтр отопительной воды ОВ (загрязнение).
- Насос отопительной воды ОВ (засорение).
- Теплообменник ОВ/ГВ (засорение).
- Может быть использована не совсем подходящая незамерзающая смесь (рекомендуется AlycolTermo).

Неисправность датчика ГВ TV - F4

Датчик температуры горячей воды ГВ разомкнут. Работа котла остановлена – возле символа "молния" мигает светодиод.

Проверьте:

- 1. Сопротивление датчика
- 2. Соединительный кабель, идущий от панели управления к датчику

Остальные ошибки – F5

- 1. Пламень еще горит дольше, чем 5 sekund после закрытия газового клапана.
- 2. Значение входящего напряжения ниже 170 В.
- 3. Использована не соответствующая плата управления или плата дисплея (user interface)

Неисправность маностата воздуха или вентилятора – F6 (KTZ)

Неисправность термостата утилизатора – F6 (KOZ)

Маностат воздуха (КТЗ) остается в отсоединенном положении. Вентилятор (КТЗ) не работает. Термостат утилизатора (КОЗ) находится в отсоединенном положении. Работа котла прекращена – возле символа "молния" мигает светодиод\.

Проверьте (КТЗ):

- 1. Подводящий шланг, идущий от вентилятора к маностату.
- 2. Правильное положение шланга маностата (место подсоединения Р2).
- 3. Функции вентилятора.

Проверьте (КОЗ):

- 1. Функции термостата утилизатора
- 2. Отвод продуктов сгорания (минимальная рекомендуемая тяга 5 Па)

Ошибка коммуникации – F7

Котел не может обработать входящие сигналы – возле символа "**молния**" мигает светодиод.

- 1. Присоединение коннектора к плате управления и плате дисплея/ user interface
- 2. Плату управления (визуально).
- 3. Плату дисплея / user interface (визуально).

Неисправность газового клапана – F8

Газовый клапан не реагирует на приказы, приходящие от панели управления. Работа котла остановлена – возле символа "молния" мигает светодиод.

Проверьте:

- 1. Входящий коннектор газового клапана
- 2. Значение сопротивления катушки газового клапана

Потеря установленных параметров котла – F9

У некоторых параметров котла могло дойти к потере наставленных пользователем или заводом-изготовителем значений.

- Настройку пользователя
- Техническую настройку котла (установку мощности котла, выбега насоса)

3. Режим сервис - уровень1

(выбег насоса, мощность для системы отопления)

Нажмите кнопку MODE приблизительно на 10 с. На дисплее котла на короткое время появится изображение "**Pr**" с последующими значениями "о0" или "о1".

Установка выбега насоса

С помощью кнопки + или – установите необходимое значение.

"о0" – выбег насоса (45 с) после погашения пламени горелки

"**o1**" – выбег насоса (45 с) с момента прекращения подачи сигнала от комнатного регулятора

Настройка параметра выбега насоса подтверждается последующим нажатием кнопки **MODE**. Одновременно осуществляется переход к параметру настройки мощности для системы отопления.

Установка мощности для системы отопления

Диапазон значений для установки мощности от 9кВт до 24кВт (по 1 кВт). Число, изображенное на дисплеи, соответствует действительному значению мощности. Мощность, установленная заводом-изготовителем, "**FA**" = 15кВт.

С помощью кнопки + или – выберите желаемую величину, а нажатием кнопки MODE ваш выбор подтвердите.

3. Режим сервис – уровень 2

(установка мощности котла)

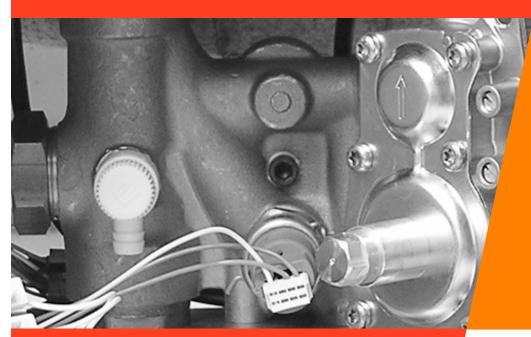
Данный уровень предназначен для калибрации газового клапана – установке минимальной мощности котла. Калибрация проводится, в основном, после замены газового клапана.

Для осуществления доступа на данный сервисный уровень должны быть выполнены следующие требования:

- 1. Должна быть задана температура нагрева ОВ
- 2. Должен быть гарантирован расход ТВ TV (мин. 8 л/мин)
- 3. Температура ГВ должна быть установлена на 60°C

Нажмите кнопку MODE и держите приблизительно 10 с – сервисный уровень "**Pr**".

С помощью короткого нажатия кнопки MODE перейдете на установку мощности для отопительной системы.


Снова нажмите кнопку МОDЕприблизительно на 10 секунд – сервисный уровень "**LP**"

В вашем распоряжении находится 12 параметров в диапазоне 1-12 и настройка завода-изготовителя "**FA**".

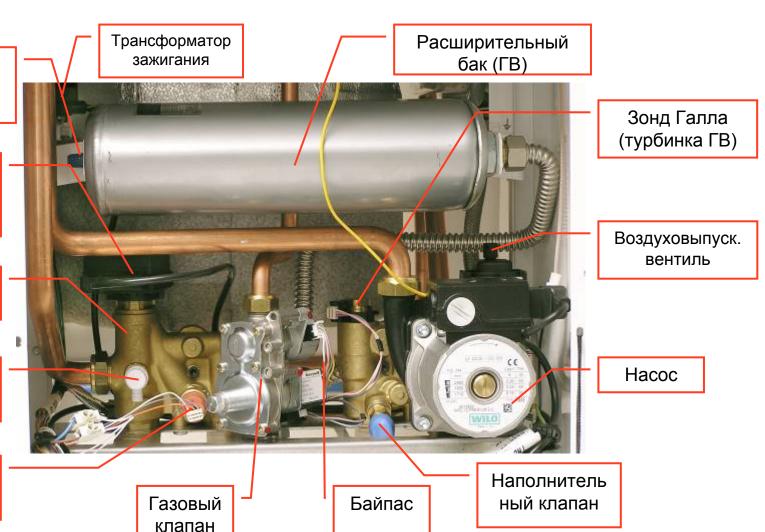
Подсоедините U-манометр и проверьте, отвечают ли минимальные границы мощности предписанному значению (см. Установка мощности котла).

В случае отклонения наставьте с помощью кнопок "+ -" соответствующее значение. Значение выбранного параметра подтвердите нажатием кнопки MODE.

Описание составных частей

- Описание
- Демонтаж

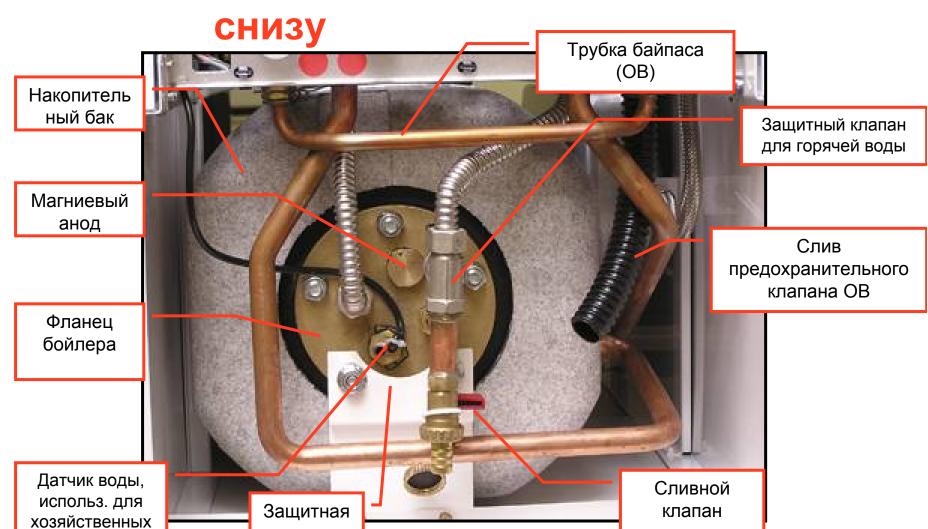
Гидравлическая часть


Наполнитель. вентиль расш.бака ГВ

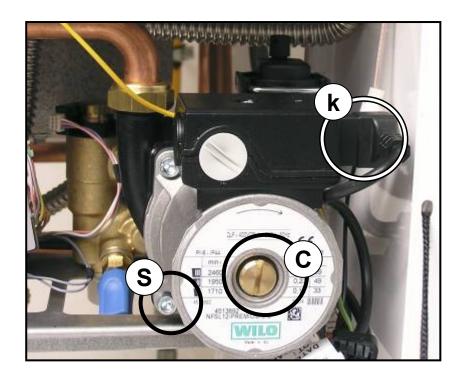
Мотор 3ходового клапана

3-ходовой клапан

Сливной клапан


Датчик давления

нужд


Накопительный бак – вид

пластинка

Hacoc

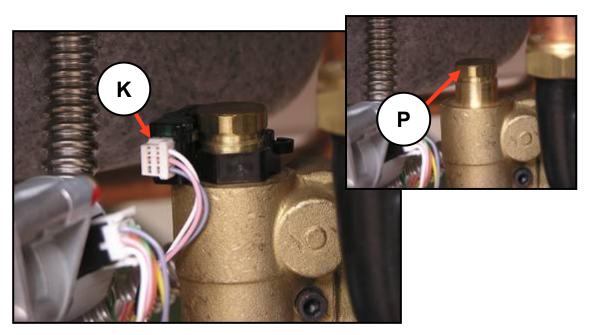
Предупреждение: Чистка насоса не относится к гарантийному ремонту

Тип: Wilo NFSL 12 Premium

Количество скоростей: 3

Одна из причин перегрева котла может быть вызвана блокировкой насоса. В случае блокирования поступайте следующим образом:

- □ Отвинтите защитный винт (C) на оси ротора насоса.
- □ Плоской отверткой попробуйте легко повернуть вал ротора.
- □ В случае большого сопротивления демонтируйте насос и вычистите его.

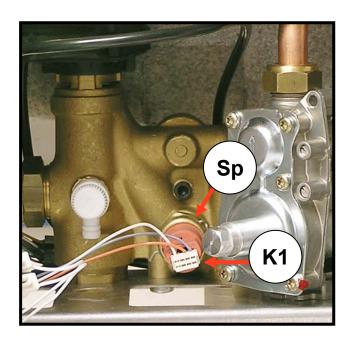

Порядок демонтажа насоса:

Непосредственно перед демонтажем отсоедините котел от электрической сети и выпустите из него воду

- □ Отсоедините коннектор вводного кабеля (k)
- □ Ослабьте и выкрутите 4 защитных винта (s), находящихся на насосе
- □ Выньте ротор насоса и вычистите его вместе со статором

Замена датчика Галла - турбинки

- Отсоедините котел от эклектической энергии.
- Закройте все вводы и выводы под котлом (ОВ, ГВ,газ).
- Выпустите из котла воду.
- Выньте коннектор датчика Галла (К).
- Осторожно снимите датчик Галла.
- С помощью гаечного ключа №18 выкрутите гильзу турбинки (Р).
- Подробная схема турбинки находится на следующей странице.

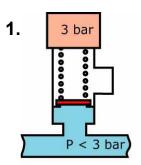


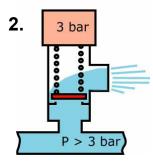
Датчик Галла - турбинка

Демонтаж датчика давления

Предупреждение: Перед заменой датчика давления необходимо выключить котел с помощью главного выключателя и отсоединить от электрической сети, вытянув вилку из розетки.


Порядок демонтажа:


- выпустите воду из котла
- снимите переднюю крышку и откиньте панель управления
- выньте коннектор датчика давления (К1)
- выньте обойму датчика давления (Sp)
- вытащите датчик по направлению к себе
- в обратном порядке установите новый датчик


Примечание: При обратном монтаже намажьте уплотнительную "О" прокладку водостойким вазелином.

Защитный клапан ОВ

Характеристика

В случае появления избыточного давления в системе отопления в целях предосторожности происходит выпуск воды.

Спецификация

Давление открытия 3 бара.

Примечание:

Выводу перепада предохранительного клапана рекомендуем обеспечить соответствующий спуск.

Защитный клапан ГВ

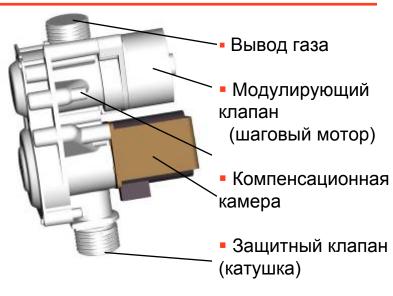
Характеристика

В случае появления избыточного давления в системе отопления в целях предосторожности происходит выпуск воды.

Спецификация

Давление открытия 6 бар.

Примечание:


Выводу перепада предохранительного клапана рекомендуем обеспечить соответствующий спуск.

Газовый клапан

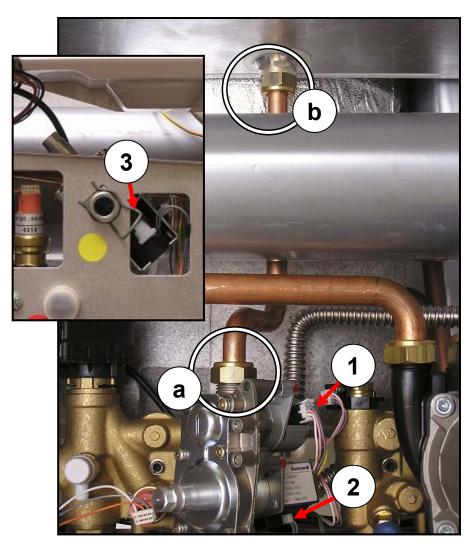
•Ввод газа

Функции

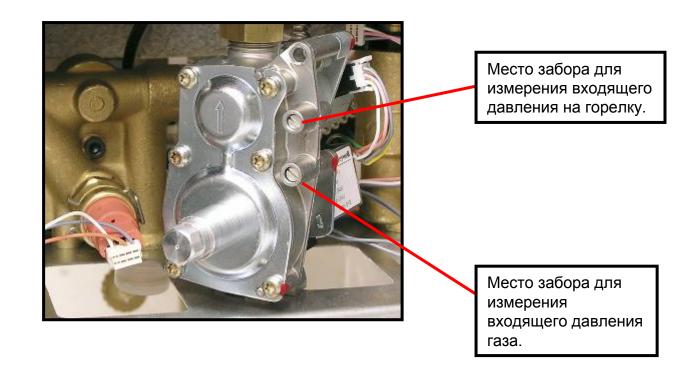
открыть/закрыть/приспособить расход газа

Использование

Характеристика

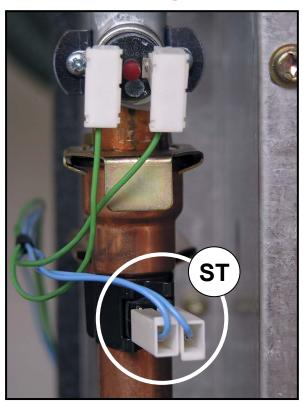

Сопротивление : 116 Ом /22°C

Питание = 6ВА


Замена газового клапана

- убедитесь отсоединен ли котел от электрической энергии и газа
- открутите перекидную гайку привода газа к котлу и привод отсоедините
- снимите переднюю крышку и откиньте панель управления
- отсоедините коннектор (1) от шагового мотора газового клапана
- отсоедините коннектор от главной катушки (2) газового клапана
- отвинтите шайбу (a) и ослабьте шайбу (b)
- вытяните защитную обойму газового клапана, расположенную за его входящей резьбой (3)
- установите новый газовый клапан в порядке, обратном демонтажу
- при выполнении обратного монтажа следите за тем, чтобы были использованы новые соответствующие прокладки и все соединения были основательно затянуты
- откройте привод газа в котел
- проверьте плотность соединений газохода с котлом!
- проверьте настройку котла и сигнал о соединении с комнатным регулятором
- убедитесь,что котел подсоединен к электрической сети и включите котел с помощью главного выключателя
- проверьте установку параметров мощности котла
- проверьте плотность соединений газохода с котлом!

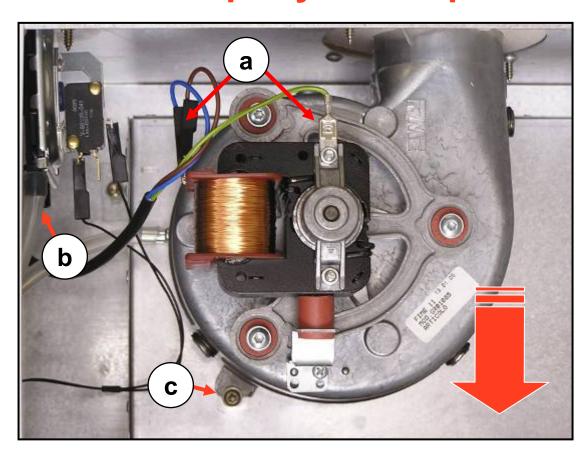
Газовый клапан – места забора



Проверка функций газового клапана

Компоненты	Текущие измерения	Проверить
Газовый клапан Сопротивление	При заборе во время искрения:	0 В: катушка газового клапана без повреждений.
катушки 116 Ом	24 Vdc на 1 - 2 секунды, потом 12 Vdc (постоянно) на коннекторе катушки газового клапана	24 ВБ потом 12 В, но без газа в горелке: проверьте, если вентиль не залеплен. Если нет, то проверьте шаговый клапан.
Наладочный клапан (шаговый мотор)	Закройте привод газа:	Если клапан неподвижен: Проверьте как присоединение к мотору, так и к панели управления. Замените панель управления.

Датчик температуры **ОВ**


Описание

Датчик температуры ОВ на основании изменения сопротивления получает информацию, которую передает на панель управления котлом. Проверку функций датчика проведите с помощью сравнительной таблицы (см. электрочасть)

- Перед заменой датчика температуры отсоедините котел от привода электрической энергии.
- Отсоедините коннекторы от датчика температуры.

Демонтаж вытяжного вентилятора продуктов горения

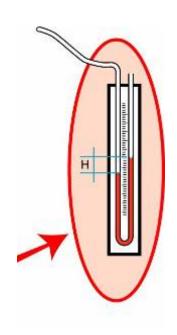
Предупреждение:

Перед демонтажем вентилятора необходимо отсоединить котел от привода электрической энергии.

- Отсоедините провода (а), идущие от катушки вентилятора и заземления
- Отсоедините от вентилятора шланг маностата (b)
- Открутите защитный винт (с), расположенный на вентиляторе
- Выберите вентилятор, потянув его вниз

Контрольное измерение:

Сопротивление катушки вентилятора при приблизительно 22°C = 48 Ом



Установка мощности котла

- Изготовителем устанавливаются следующие параметры мощности котла:
 - 24 KTZ, 24 KOZ в систему отопления 15 кВт
 - 12 KTZ, 12 KOZ в систему отопления 8 кВт
 - для подготовки ГВ мощность котла всегда устанавливается на максимум
- Мощность котла для нужд отопительной системы должна быть установлена в соответствии с проектной документацией.
- При вводе котла в эксплуатацию выполняется, в основном, установка верхней границы мощности для нужд отопительной системы.
- Максимальная и минимальная границы мощности котла только контролируются.

Установка мощности котла

Установка мин. и макс. границ мощности котла производится в электронной форме только на одном уровне. Порядок установки:

- присоедините U-манометр к месту забора на газовом клапане (входящее давление газа на горелку)
- включите котел и перейдите на следующий сервисный уровень "**LP**" (Глава Режим сервис вход в сервисный режим уровень 2)
- Следите за показаниями величины мин.мощности на U-манометре. В случае отклонения с помощью кнопок + или наставьте:
 - ZP 22 мм/H₂0 (2,2 мбар) для 24 KTZ, 24 KOZ
 - ZP 16 мм/ ${
 m H}_{
 m 2}$ 0 (1,6 мбар) для 12 KTZ, 12 KOZ
- Подтвердите заданное значение с помощью кнопки MODE
- Верхняя граница мощности автоматически устанавливается на основании установки ее нижней границы.
- В случае, если верхняя граница не соответствует значению 120 мм/H₂0 (12 мбар), скорей всего, входящее давление газа не соответствует предписанному значению 200 мм/H2O (20мбар).

Трансформатор зажигания

Описание

Данное приспособление предназначено для создания искры. Между двумя наконечниками электродов возникает искра, которая при прохождении через них смеси газа и воздуха зажжет пламя горелки.

Трансформатор расположен в левой части котла над его гидравлической частью.

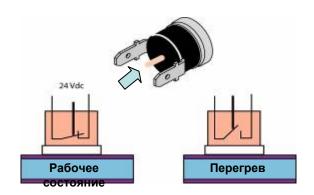
Функции

- После включения котла с помощью главного выключателя в трансформатор зажигания подается напряжение 70 VDC (первичное).
- При зажигании в трансформатор зажигания подается напряжение 130 VDC (первичное). Данное напряжение генерируется приблизительно на 18 000 В (вторичное).
- После зажжения (подтверждения ионизации) напряжение снизится до величины 12,5 VDC.

Контрольное измерение (котел не присоединен к электрической сети)

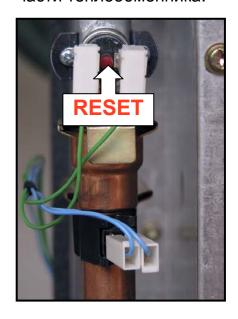
Первичная сторона 970 кОм (ввод с панели управления котлом)

Секундарная сторона 166 Ом (вывод на поджигающие электроды)



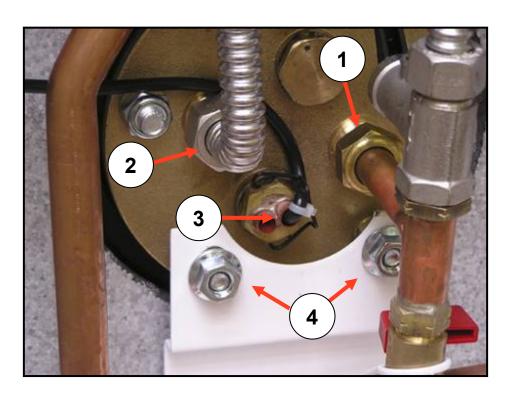
Аварийный термостат

Функции

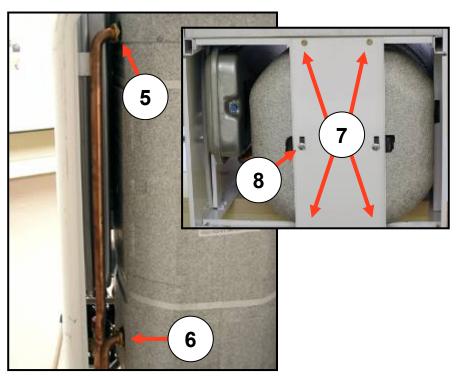


Перегрев

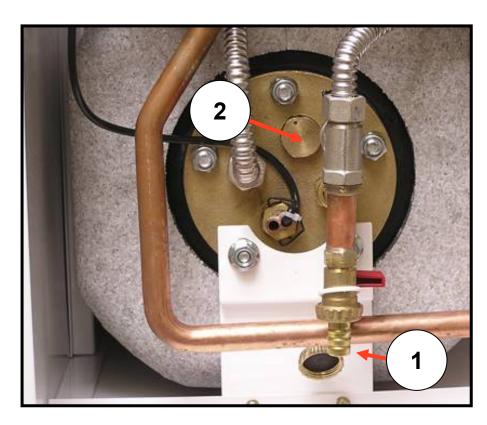
(Температура поверхности выступной части теплообменника превысила значение 105°С). Reset аварийного термостата производится с помощью нажатия кнопки, находящейся между двумя присоединительными клеммами.


Характеристика

- размыкание контактов при температуре : 105°C
- эл.напряжение: 24В
- ручной reset (reset можно производить при снижении температуры ниже 88°С).
- термостат располагается на выступной части теплообменника.


Замена теплообменника ГВ (1)

- подождите, пока система отопления и теплообменник остынет
- закройте все клапаны, расположенные под котлом (OB, ГВ, газ)
- с помощью сливных вентилей слейте воду из котла и теплообменника
- ослабьте и выкрутите винты на входах и выходах (OB, ГB, газ)
- демонтируйте отвод продуктов горения
- снимите котел со стены (для этого необходимы минимально два человека!)
- ослабьте и открутите гайку привода холодной воды в накопительный бак (1)
- ослабьте и открутите гайку вывода холодной воды из накопительного бака (2)
- ослабьте шплинт и снимите датчик температуры ГВ (3)
- ослабьте и отвинтите защитные гайки на накопительном баке (4)


Замена теплообменника ТВ (2)

- ослабьте и отвинтите гайку вывода отопительной воды из накопительного бака (5)
- ослабьте и отвинтите гайку привода отопительной воды в накопительный бак (6)
- ослабьте и отвинтите 4 защитные винты верхней консоли накопительного бака (7)
- вытяните накопительный бак по направлению вверх
- ослабьте и открутите 2 крестовые винты на верхней консоли, которую потом снимите

Замена магниевого электрода в накопительном баке

Магниевый электрод защищает корпус накопительного бака от коррозии.

Контроль магниевого электрода рекомендуем производить минимально один раз в год. В областях с повышенным содержанием железистых веществ рекомендуем производить контроль более часто – раз за полгода.

Порядок замены:

- Подождите пока вода в накопительном баке не остынет до безопасной температуры.
- Отсоедините котел от привода электрической энергии и затворите привод горячей воды.
- На раструб сливного вентиля (1) наденьте садовый шланг, откройте кран с горячей водой в ближайшем месте забора и выпустите воду из накопительного бака.
- •Ослабьте с помощью ключа а потом выкрутите магниевый электрод (2).
- Проверьте его состояние и в случае 60% износа замените за новый.

Датчик температуры ГВ

- Датчик температуры вставите в тот патрон, который позволяет углубиться до 45 см.
- Показания датчика приведены в сравнительной таблице NTC датчиков.

Расширительный бак для отопительной воды

- Расширительный бак отопительной воды предназначен для выравнивания давления воды в отопительной системе.
- Расширительный бак (объем 8л) рассчитан на 100 л воды, находящейся в системе отопления с температурой 70 °С. В случае превышения количества воды в системе отопления необходимо обеспечить систему дополнительным расширительным баком, который будет соответствовать увеличению объема воды.
- Расширительный бак наполняйте до достижения давления на 10 20 kПа ниже, чем предполагаемое рабочее давление в системе отопления.
- Давление в расширительном баке измеряйте только в случае отсутствия в нем воды.

Расширительный бак для отопительной воды

Демонтаж расширительного бака ОВ:

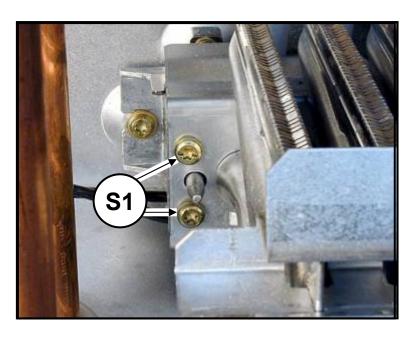
Примечание: В случае, если расстояние под котлом меньше 40 см, котел необходимо демонтировать

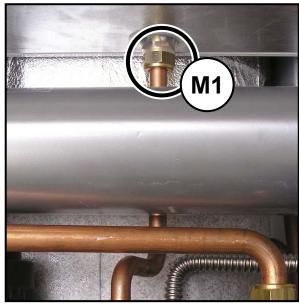
- подождите, пока вода в отопительной системе остынет
- закройте ввод и вывод ОВ
- с помощью сливного вентиля выпустите из котла воду
- ослабьте и открутите шайбу на шланге, подводящем воду в расширительный бак (М1)
- ослабьте и открутите контргайку (М2)
- движением по направлению вверх вытяните расширительный бак

Расширительный бак для горячей воды

Расширительный бак ГВ предназначен для выравнивания давления воды в накопительном баке. Рекомендуемое давление в расширительном баке - приблизительно 5,6 бар. При проведении проверки давления действуем точно также, как в случае расширительного бака ОВ.

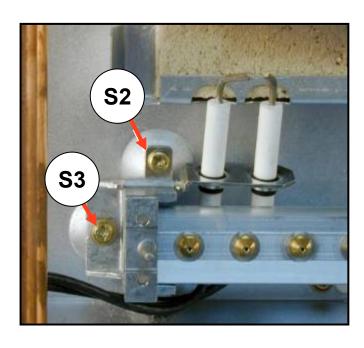
Расширительный бак для горячей воды




Демонтаж расширительного бака:

- подождите пока теплообменник ГВ остынет
- закройте ввод и вывод ГВ
- с помощью сливного вентиля выпустите из бака воду
- ослабьте и открутите гайку, находящуюся на приводной трубке (M1)
- ослабьте и открутите контргайку (M2)
- открутите крышку контрольного / дополняющего клапана (С)
- легко отодвиньте один из кронштейнов и выберите расширительный бак вон

Демонтаж горелки (1)



- Непосредственно перед заменой горелки отсоедините котел от привода электрической энергии и закройте газовый клапан, находящийся под котлом
- Ослабьте и выкрутите по два винта (S1) с каждой стороны горелки
- Вытяните горелку по направлению к себе
- Ослабьте верхнюю гайку (М1) на приводе газа к горелке

Демонтаж горелки (2)

- Ослабьте и выкрутите с каждой стороны горелки предохранительные винты (S2) электродов зажигания и ионизационных электродов
- Ослабьте и открутите предохранительные винты (S3) с каждой стороны консоли горелки и замените основание горелки

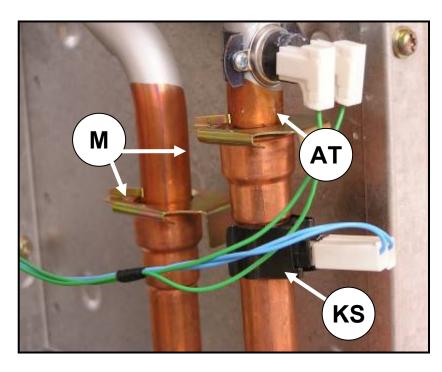
Предупреждение:

При обратном монтаже следите за тем, чтобы все соединения были основательно затянуты и были использованы только новые уплотнительные прокладки.

Электроды зажигания и ионизирующий электрод

Электроды зажигания

- Рекомендованное расстояние между наконечниками электродов зажигания составляет 3-4 мм
- Наконечники электрод должны всегда находится в плоскости горелки
- Расстояние между наконечниками электродов зажигания и плоскостью горелки должно быть в диапазоне 5–8 мм


Ионизирующий электрод

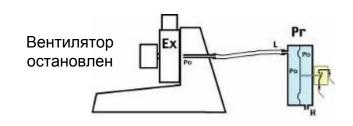
- Наконечник ионизирующего электрода должен всегда находиться в плоскости поверхности горелки
- Рекомендуемая длина наконечника ионизирующего электрода 5–8 мм

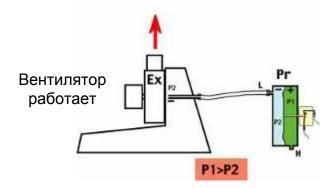
Замена теплообменника ОВ

Непосредственно перед заменой необходимо выполнить следующие шаги:

- выключите котел с помощью главного выключателя и отсоедините от привода электрической энергии (вытяните шнур из розетки)
- закройте приводы воды, расположенные под котлом
- выпустите из котла воду

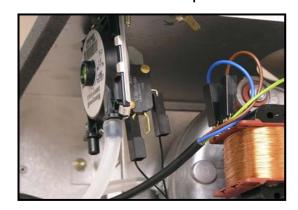
Порядок демонтажа:


- снимите переднюю крышку, крышку внутренней камеры (у KTZ), крышку соединительной камеры и боковые части обшивки
- демонтируйте аварийный термостат (AT) с левой части теплообменника
- снимите датчик температуры (KS)
- вытяните предохранительные хомуты (M) привода /отвода ОВ
- теплообменник немного поднимите, а подводящие трубки немного потяните вниз
- вытяните теплообменник по направлению к себе
- установьте новый теплообменник в порядке, обратном демонтажу


Примечание: при выполнении обратного монтажа теплообменника проверьте уплотняющие прокладки, а для облегчения монтажа намажьте их водостойким вазелином.

Маностат (КТZ)

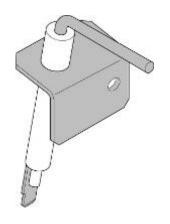
функции



Использование

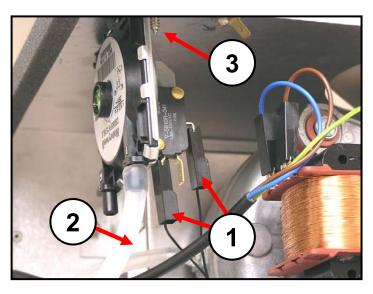
Предохранительный элемент, контролирующий соответствующий отвод продуктов сгорания для варианта с принудительным отводом продуктов сгорания (ТУРБО).

Характеристика


Маностат размыкает контакт при 80Па Замыкает контакт при 68Па

Детектор пламени

Детектирование пламени осуществляется с помощью ионизирующего электрода, который выполняет функцию предохранительного элемента. Ионизирующий электрод через схему зажигания в плате управления котлом следит за наличием пламени горелки в момент зажигания.

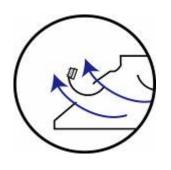

Плата управления в момент старта подает по схеме зажигания слабый электрический ток (cca 0,5 - 6 µA) на ионизирующий электрод. В моменте зажигания пламени между электродом и горелкой возникает так называемый полупроводниковый эффект. Посредством замыкания схемы зажигания на плату подается сигнал выполнения критерия безопасности.

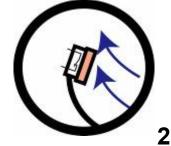
В случае, если пламя погаснет, в схеме управления газового клапана произойдет остановка подачи напряжения на главную катушку и шаговый мотор газового клапана.

В случае необходимости проверки функций ионизирующего электрода используйте полупроводниковый (например, кремниевый) диод, который подсоедините между ионизирующий кабель и корпус горелки. Диод необходимо присоединить к корпусу горелки катодной стороной сразу после зажжения пламени горелки.

Демонтаж маностата

- Вытяните коннекторы присоединительных проводов (1)
- Вытяните шланг маностата (2)


Предупреждение:


При замене маностата присоедините шланг к муфте, обозначенной **P2**

 Поддержите маностат и выкрутите два его предохранительные винта (3)

Термостат продуктов сгорания (КОZ)

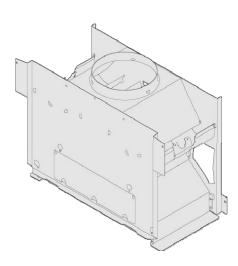
3

Описание

Термостат продуктов сгорания служит в качестве охраны в случае недостаточной тяги дымохода и защиты от проникновения продуктов сгорания в жилые помещения.

Характеристика

Конструкция: термостат биметаллический самовозвращающийся


24 КОЗ размыкание контактов при 80 °C со

замыканием контактов при 70 – 72 °C

12 КОЗ размыкание контактов при 65 °C

замыкание контактов при 55 – 57 °C

Процесс размыкания термостата продуктов сгорания

Электрическая часть

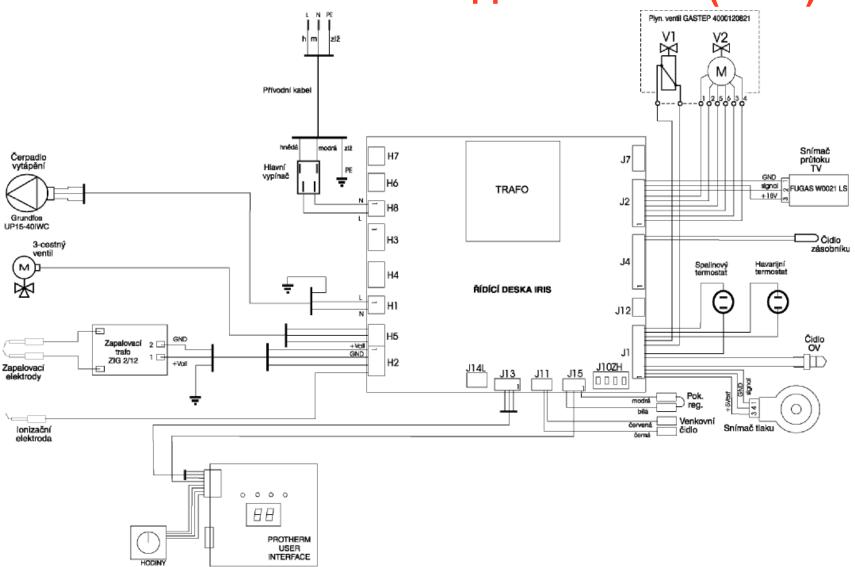
- Условия инсталляции
- Схема подключения котла
- Подсоединение периферийных устройств

Условия инсталляции (Эл.)

Электрическое подключение котла к сети питания осуществляется с помощью гибкого трехжильного кабеля без вилки. Стационарная розетка для подключения котла к электрической сети должна соответствовать требованиям ЧСН 33 2000-4-46. Она обязательно должна иметь защитный контакт (штырек), надежно соединенный с проводом РЕ или PEN (комбинация желтого и зеленого цвета). Котел должен быть всегда с помощью присоединительного кабеля подключен к защитному проводу и должен быть установлен так, чтобы был обеспечен доступ к розетке. Не разрешается использование всевозможных двойников, удлинителей и т.п.

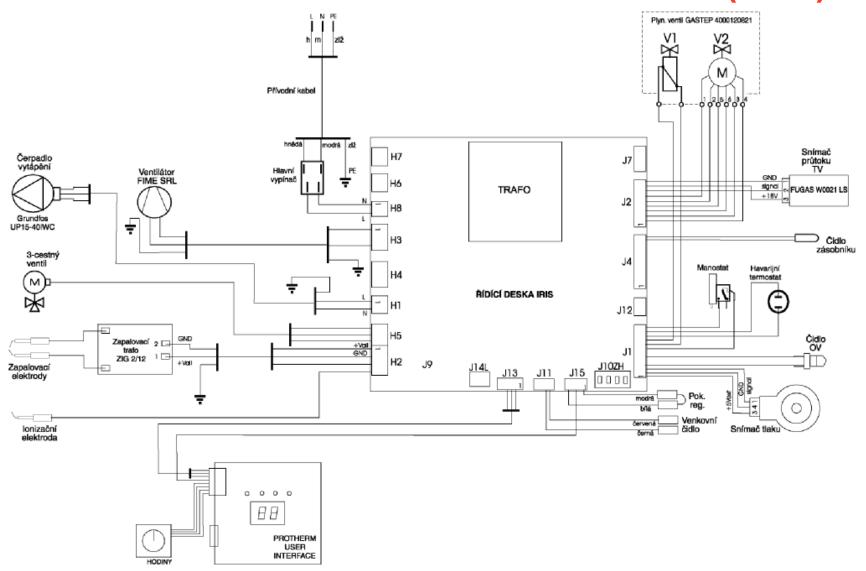
Котел оснащен трубчатым предохранителем (Т 125 мА/250В), находящимся на плате управления котла.

Предупреждение: Подготовку вилки, розетки и подключение комнатного регулятора, являющееся манипулированием с внутренним электрооборудованием котла, должны в соответствии с Постановлением № 50/1978 Свода законов проводиться электриком, обладающим соответствующей квалификацией. Точно также и обслуживание электрических частей котла должно производиться специалистом с указанной квалификацией. Перед началом работ в электрической части котел необходимо отключить от сети, вытянув шнур из розетки!

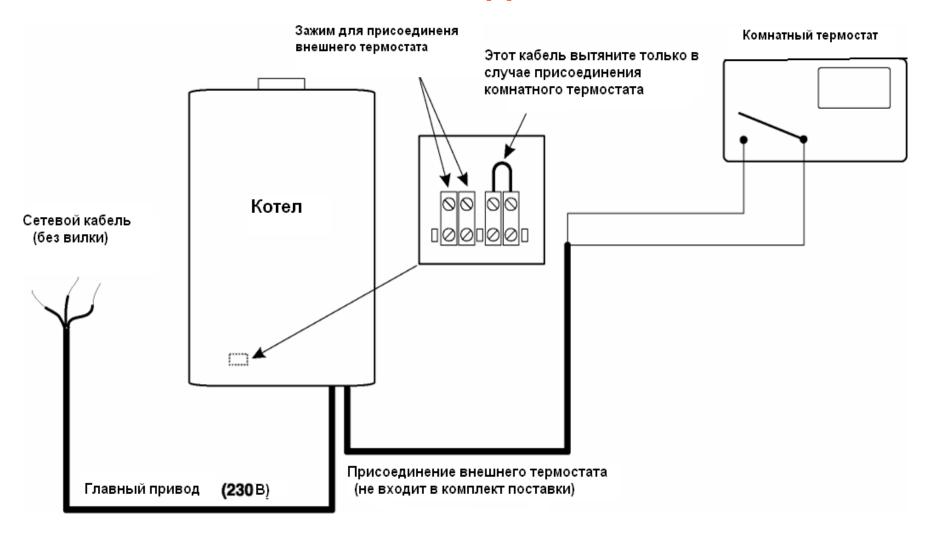

Для управления котлом при помощи комнатного регулятора рекомендуется использовать только регулятор, не имеющий напряжение на выходе, т.е. не подающий постороннего напряжения на котел. Минимальная требуемая нагрузка на выходные контакты регулятора составляет ~ 24 В / 0,1А. Комнатный регулятор необходимо соединить с котлом с помощью двухжильного кабеля. Рекомендуемое поперечное сечение медного провода для присоединения комнатного регулятора - от 0,5 до 1,5 мм2.

Укладка проводов для присоединения комнатного регулятора не может быть параллельна с проводами сетевого напряжения.

Клеммная плата для подключения комнатного регулятора оснащена заводским переключателем и расположена на задней стороне панели управления котла. Клеммная плата доступна после снятия наружной крышки и откидывания панели управления.

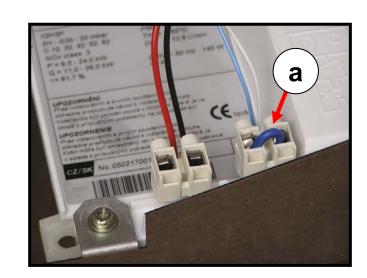


3. Эл.схема подключения (КОZ)



3. Эл.схема подключения (КТZ)

Эл.схема подключения



Подсоединение периферических устройств (комнатный регулятор)

Клеммная плата для подсоединения комнатного регулятора расположена на задней обратной стороне панели управления. Клеммная плата для присоединения комнатного регулятора замкнута заводской клеммой (поз. а).

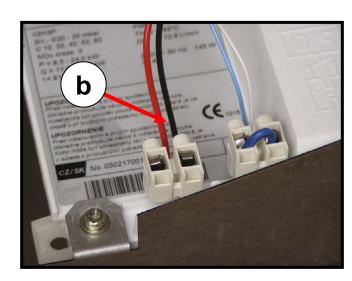
Присоединение комнатного регулятора:

- В случае, если клеммы незамкнуты, котел работает только с целью подготовки горячей воды ГВ (если температура установлена). Нагрев ОВ не функционирует.
- 2. В случае, если клеммы замкнуты, котел нагревает воду для системы отопления в соответствии с выбранной температурой. Подготовка горячей воды, в этом случае, имеет преимущество перед нагревом ОВ
- 3. В случае, если к клемме подсоединен комнатный термостат, котел нагревает воду до установленной термостатом температуры. Температура, установленная в котле, выполняет функцию ограничения.

Предупреждение:

На клемму комнатного регулятора не может поступать постороннее напряжение

Подсоединение периферийных устройств (внешний датчик)


Присоединение внешнего датчика:

Клеммную плату для присоединения внешнего датчика найдете влево от клеммной платы комнатного термостата (поз. b).

Внешний датчик присоединяйте только тогда, когда пользователь проявит желание управлять системой отопления посредством эквитермного регулирования. Пользователя необходимо предупредить, что эквитермное регулирование нельзя убрать из функций при помощи дисплея. Установленная температура ОВ при данном способе управления не играет роли.

В случае присоединения к внешнему датчику котел нагревает воду в течение часа до максимальной рабочей температуры (см. наладку эквитермного регулирования). По истечении этого срока управление котлом переходит на эквитермный режим. Температура отопительной воды зависит от выбора ekvitermní кривой и внешней температуры.

Комнатный термостат при таком способе управления выполняет функцию ограничения – поддерживает в помещении установленную температуру.

Предупреждение:

На клеммы внешнего датчика не может подводиться постороннее напряжение

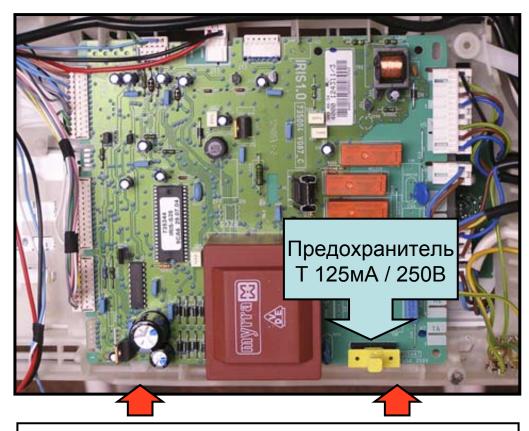
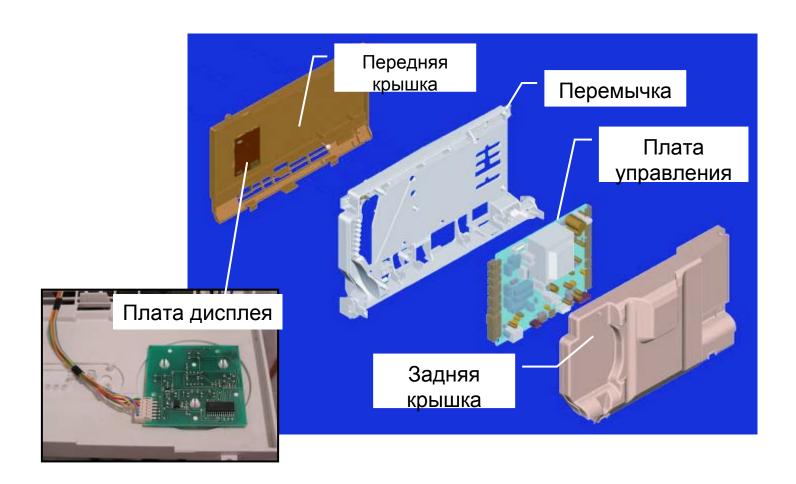


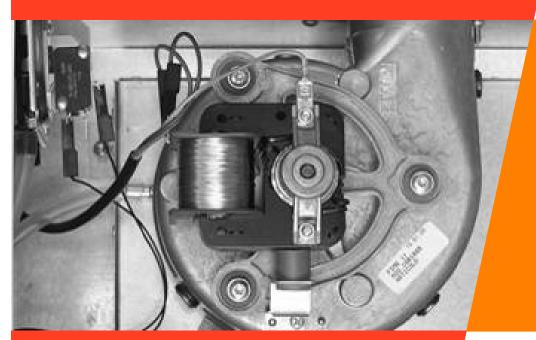
Таблица значений NTC датчиков

T (°C)	0	1	2	3	4	5	6	7	8	9
-20	98397	92864	87676	82809	78241	73953	69925	66140	62583	59239
-10	56093	53132	50346	47722	45250	42921	40725	38654	36701	34858
0	33118	31475	29923	28456	27070	25760	24520	23347	22237	21186
10	20190	19247	18354	17507	16703	15942	15219	14533	13882	13263
20	12676	12118	11587	11083	10603	10147	9713	9300	8907	8532
30	81176	7836	7512	7203	6909	6628	6360	6105	5861	5628
40	5406	5193	4990	4796	4611	4434	4264	4102	3947	3799
50	3657	3521	3390	3266	3146	3032	2922	2817	2716	2619
60	2526	2437	2352	2270	2191	2116	2043	1973	1906	1842
70	1780	1720	1663	1608	1555	1504	1455	1408	1363	1319
80	1277	1236	1197	1160	1123	1088	1055	1022	991	961
90	931	903	876	850	825	800	777	754	732	711
100	690	670	651	633	615	597	581	564	549	534
110	519	505	491	478	465	452	440	428	417	406


Плата управления

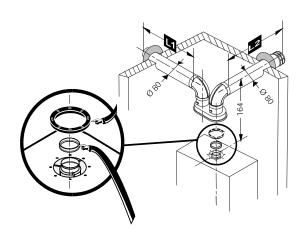
Предохранительные зажимы платы управления

Панель управления



Встроенный таймер в накопительном баке

- Перед демонтажем таймера отсоедините котел от привода электрической энергии (вытянув вилку из розетки).
- Ослабьте и откиньте переднюю крышку панели управления.
- Осторожно вытяните коннектор по направлению вверх.
- Ослабьте и открутите два предохранительных винта на таймере.

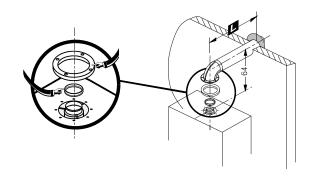


Отвод продуктов сгорания "турбо"

Отвод продуктов сгорания (KTZ)

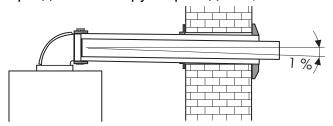
горловине вентилятора

Раздельный способ отвода продуктов **сгорания**

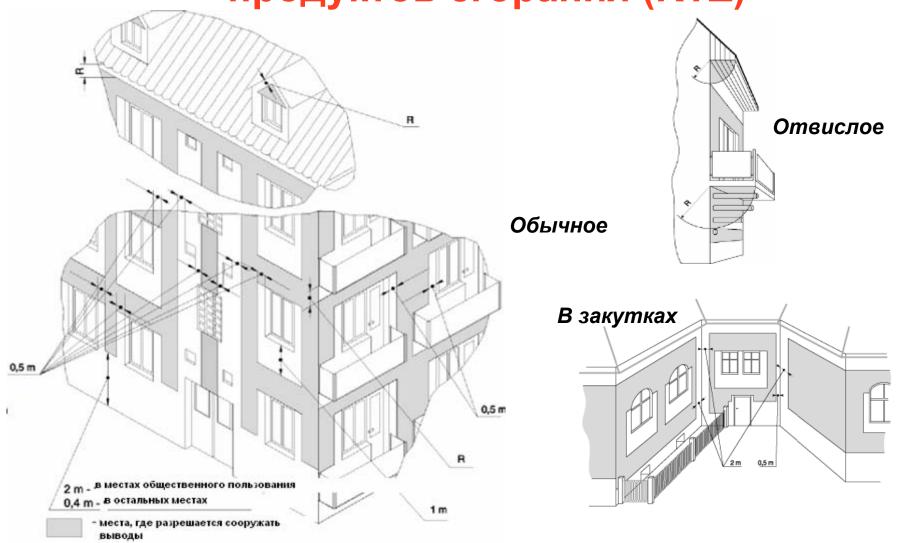

Ø 80 / 80мм: макс. длина L1+L2 = 14 м

- Если длина трубопровода более 3 m, необходимо убрать из горловины вентилятора ограничительный кружок (см.рис.)
- Минимальное расстояние между раздельным трубопроводом 2 м

Каждое 90° колено, находящееся на трассе прохождения продуктов сгорания, укорачивает длину на 1 м.

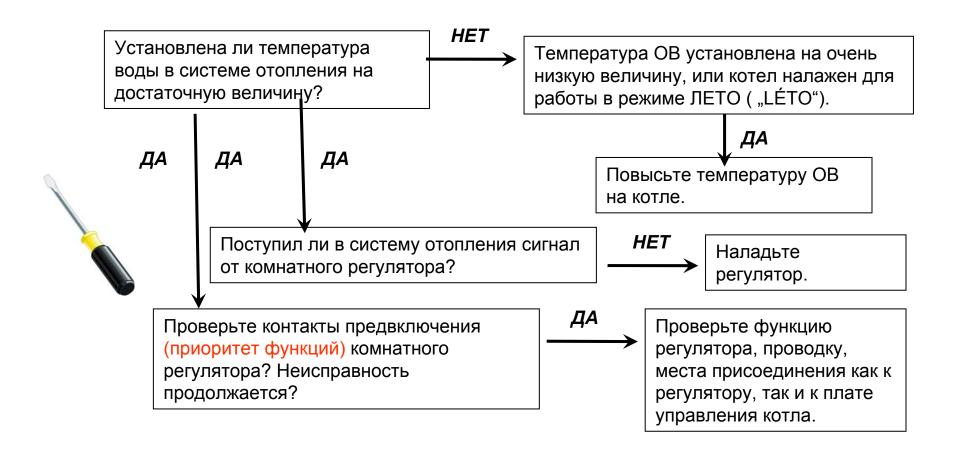

Каждое 45° колено, находящееся на трассе прохождения продуктов сгорания, укорачивает макс. длину на $0.5~\mathrm{M}$.

Наклон трубопровода отвода продуктов сгорания, как и привода воздуха должен быть направлен по направлению выброса в окружающую среду


Параллельный отвод продуктов сгорания Ø100 / 60мм: макс. длина 7 м

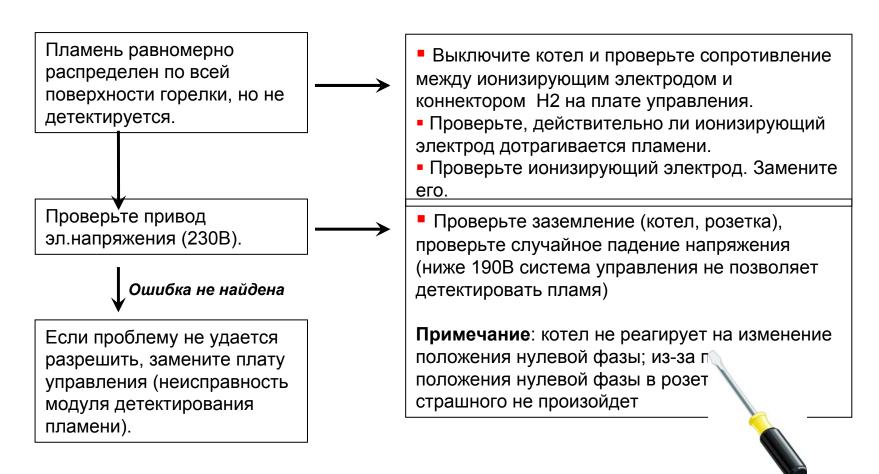
- Если длина трубопровода более 3 м, необходимо убрать из горловины вентилятора ограничительный кружок (см. рис.)
- Минимальное расстояние между разделенным трубопроводом 1,5 м

Способы вывода трасс продуктов сгорания (КТZ)


Сообщения о ошибках

Тип ошибки	Проверить				
Ни вода, ни система отопления не	 входящее напряжение 230В 				
нагреваются	■ не перегорел ли предохранитель				
	 не ослабло ли соединение коннекторов с платой управления 				
	 некачественная плата управления или плата дисплея 				
	■ давление воды				
	■ недостаток воздуха или газа (F1)				
	■ неисправный датчик температуры OB (F2)				
	■ перегрев				
	• ошибочное время отдымления				
	■ отсоединены трубки или провода (F6) от маностата				
Котел не нагревает горячую воду, но система отопления	■ ослаблены коннекторы датчика ГВ Галла				
функционирует	 неисправный датчик ГВ Галла 				
	■ неисправный датчик ГВ в накопительном баке				
	неисправная плата управления				

Отопление не функционирует, но вода из крана течет горячая



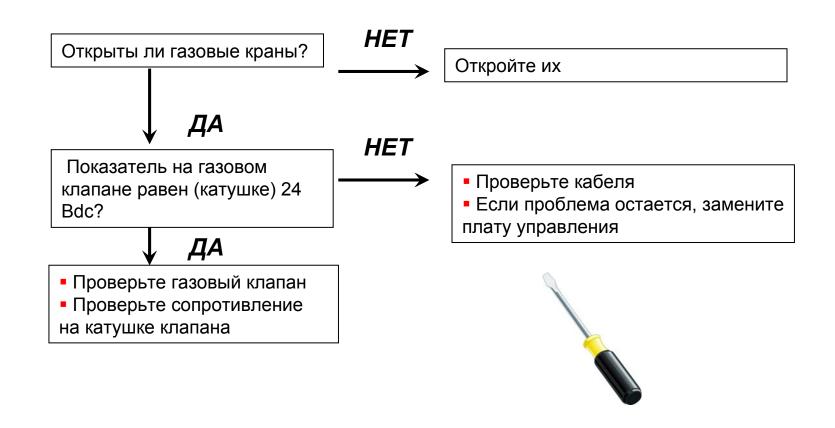
Нагрев ГВ не происходит, но система отопления действует

Горелка зажжется, но потом погаснет

Горелка зажжется, но потом погаснет. Отсутствует детектирование пламени.

Пламя распределено неравномерно по плоскости горелки и не дотрагивается ионизирующего электрода. Соответствует ли входящее давление необходимой величине?

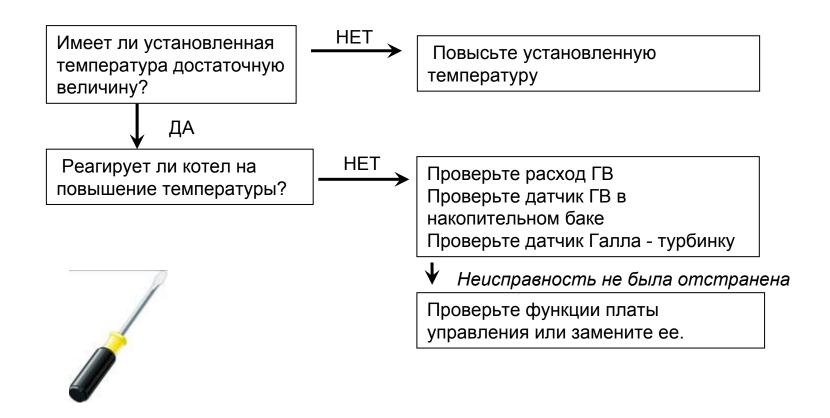
- Проверьте отворен ли газовый клапан на входе полностью.
- Проверьте входящее давление газа.


ДА

- Проверьте з мачение минимального давления на входе в горелку.
- При необходимости вычистите газовый фильтр.
- Вычистите горелку.

Котел искрит, но горелка вообще не зажигается

Радиаторы едва теплые

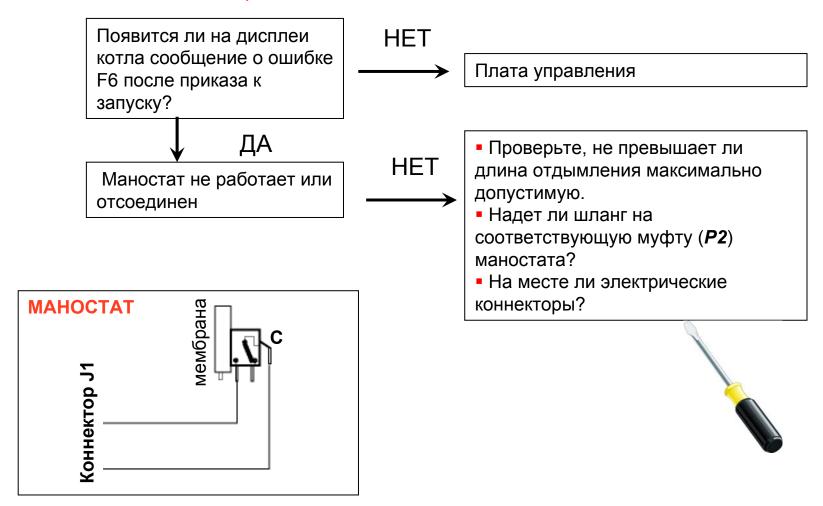


Достаточна ли мощность котла?

- Проверьте циркуляцию в радиаторах
- Проверьте датчик ОВ (может передавать искаженную информацию на плату управления котла)
- Если проблем не удается отстранить, замените плату управления или плату панели управления

Из крана течет теплая вода

ошибка:


Вентилятор не крутится

- Проверьте входящие провода вентилятора.
- Измерьте сопротивление сгоревшей обмотки катушки вентилятора.

Вентилятор работает, но котел не искрит

Установка котла

Условия инсталляции (ОВ и ГВ)

Присоединение котла к трубопроводу ОВ, ГВ и подаче газа

Присоединительные выводы котла не должны подвергаться нагрузке со стороны труб системы отопления, системы подготовки горячей воды или привода газа. Это условие предполагает точное соблюдение как диаметров всех соединительных трубок, так и расстояний от трубок до стены и взаимного расположения отдельных входов и выходов между собой.

Подключение котла к системе отопления рекомендуется выполнять таким образом, чтобы при ремонте котла было можно выпускать отопительную воду только из него.

Рабочее давление в котле и системе отопления

Отопительная система (измерения проводятся в котле) должна быть заполнена, как минимум, до достижения гидравлического давления 1 бар (соответствует гидростатическому уровню воды 10 м). Рекомендуется поддерживать давление в диапазоне 1 – 2 бар. Объем расширительного бака котла рассчитан максимально на 70 л отопительной воды в системе (при температуре 85 °C).

Термостатические радиаторные вентили

Термостатические радиаторные вентили можно использовать в случае, если котел управляется с помощью комнатного регулятора. В помещении, где находится комнатный регулятор, термостатические вентили не используются.

Это условие применяется в том случае, если котел управляется только посредством эквитермного регулирования (без использования комнатного регулятора).

Условия инсталляции (ОВ и ГВ)

Чистота системы отопления

Перед установкой нового котла необходимо тщательно вычистить систему. В старых системах необходимо удалить осевшие на дно отопительных радиаторов осадки (самовытягивающие системы).

В новых системах необходимо удалить консервирующие материалы, используемые большинством производителей радиаторов отопления. В старших системах рекомендуется использовать так называемые «улавливатели осадков».

Система подготовки ГВ

Значение давления ГВ должно находиться в диапазоне от 1 до 6 бар. В случае, если давление превышает 6 бар, то на входе должен быть установлен редукционный клапан в комбинации с предохранительным клапаном. В областях с очень «твердой» водой рекомендуется проводить соответствующие действия по ее снижению.

Использование незамерзающих смесей

Не рекомендуется использовать незамерзающие смеси со свойствами, не подходящими для эксплуатации котла. Речь идет, главным образом, о снижение теплообмена, большом объемном растяжении, старении, повреждении резиновых деталей. В случае необходимости для изготовления незамерзающей смеси с отопительной водой разрешается применять ALYCOL TERMO (производитель Slovnaft – Братислава, дистрибьютор в Чехии - Slovnaft Моравия – Брно) –опыт производителя говорит о том, что при его использовании не доходит к снижению безопасности и не оказывается значительного влияния на работу котла. В случае, если при конкретных условиях нет возможности осуществить противоморозную защиту отопительной системы данным способом, то несоответствие функциональным параметрам или возможные неисправности котла, возникшие в результате использования иных незамерзающих смесей, в рамках гарантии отстранены не будут.

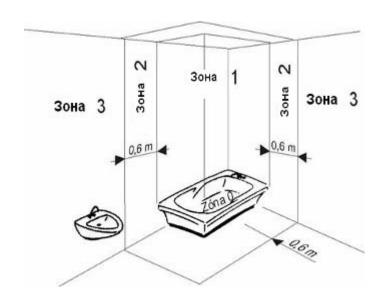
Подвод газа

Концевая муфта котла, предназначенная для привода газа, является одновременно и муфтой газового клапана с резьбой $\frac{1}{2}$ " и технологической поверхностью. Эта технологическая поверхность не позволяет использовать классическое уплотнение резьбы с помощью винтовых соединений и уплотнительных масс, как, например, камвольная пряжа, тефлон, паста и т.п. Соединение необходимо уплотнять только посредством затяжки перекидной гайки на торце муфты, подложив соответствующую плоскую прокладку размером 18 $\times 10 \times 2$.

Неправильный способ

Правильный способ уплотнения

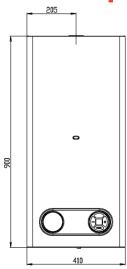
ПРЕДУПРЕЖДЕНИЕ:

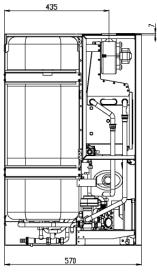

После окончания монтажа привода газа к котлу необходимо основательно проверить уплотнение произведенных соединений против утечки газа.

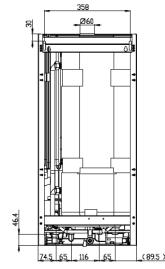
Размещение котла

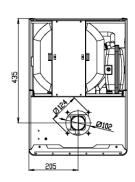
Около котла необходимо оставить столько вольного места, чтобы было можно легко и безопасно производить с котлом необходимые действия с помощью обычных ручных инструментов.

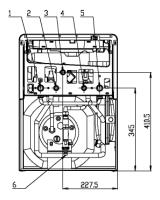
Рекомендуется оставить вольное расстояние минимально 300 мм с каждой стороны и минимально 600мм перед котлом.

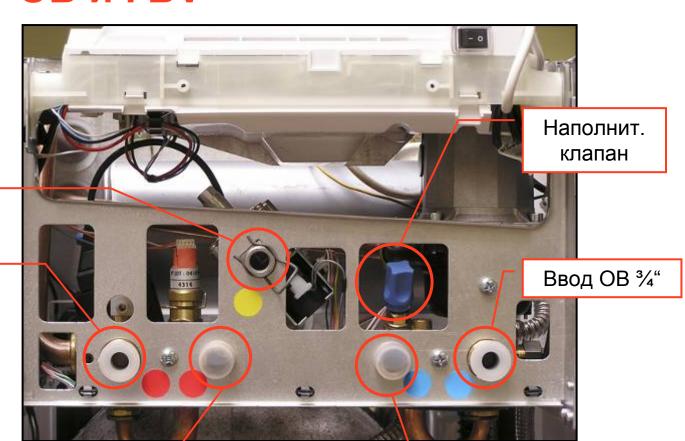



Все настенные котлы серии Tiger можно разместить в зоне 1.



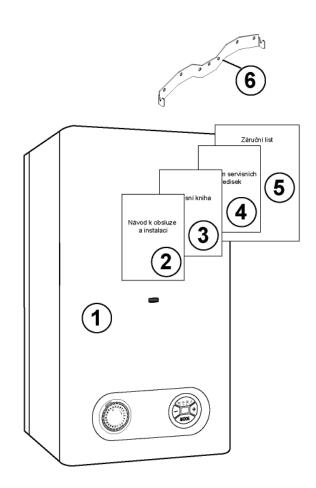

Размеры, необходимые для присоединения


- 1. Вывод ОВ ¾"
- 2. Вывод ГВ 1⁄2"
- 3. Привод газа ½"
- 4. Ввод TV ½"
- 5. Ввод OV ¾"
- 6. Слив из накопительного бака



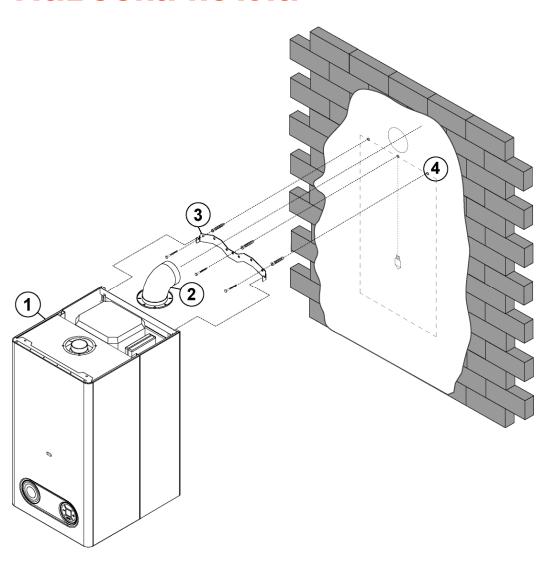
Присоединение разводов газа, ОВ и ГВV

Привод газа ½"


Вывод ОВ ¾"

Вывод ГВ 1/2"

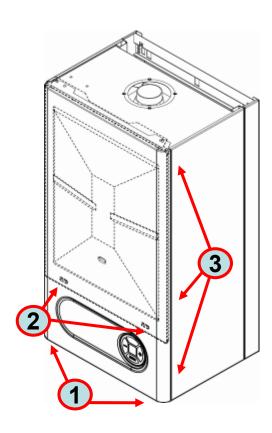
Ввод ГВ 1/2"


Комплект поставки

- 1. Котел
- 2. Руководство по обслуживанию и установке
- 3. Сервисная книга
- 4. Список сервисных центров
- 5. Гарантийный талон
- 6. Подвесная планка, включая крепежный материал

Навеска котла

Навеска котла

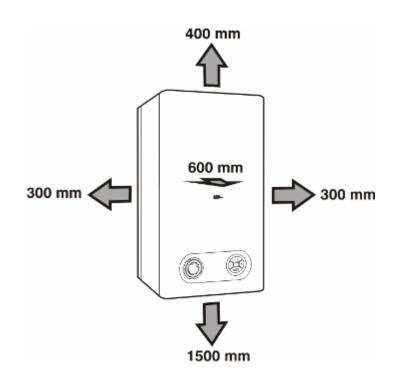

При навеске котла необходимо следить за соблюдением условий, содержащихся в проектной документации (напр., несущая способность стен, примыкание к дымоходу, вводы и выводы разводов).

Порядок навески:

- 1. Для закрепления подвесной планки, которая входит в комплект поставки котла, на навесной стене назначьте с помощью линии верхнюю грань котла (см. рис. на следующей странице). При обозначении пользуйтесь водяным нивелиром.
- 2. Приложите навесную планку к назначенной линии (поз. 3) и точками назначьте расположение ее отверстий. После этого просверлите отверстия для хомутов. Установите хомуты в полученные отверстия, приложите навесную планку и как следует закрепите ее с помощью винтов.
- 3. В случае, если производится установка котла с принудительным отводом продуктов сгорания (КТЗ), то, в случае прямого выхода на фасад (роz. 2), обозначьте место под отверстие для прохождения параллельного трубопровода (см. размеры для присоединения котла).
- 4. Завесьте котел на навесную планку.
- 5. Для установки варианта КТЗ смонтируйте трубопровод для отвода продуктов сгорания. Щель между трубами и отверстием в стене заполните негорючим материалом.

Демонтаж крышки

- •На нижней грани котла находятся два предохранительные винта, служащие для закрепления крышки котла (1)
- Передняя крышка турбо камеры (КТЗ) закреплена с помощью двух зажимов, находящихся на ее нижней грани (2)
- Боковая обшивка закреплена посредством 3-х винтов (3)


Ввод котла в эксплуатацию

Для ввода котла в эксплуатацию необходимо выполнить следующие основные действия:

- ✓ Проверьте входящее давление газа на вводе в котел (2 kPa)
- ✓ Проверьте уплотнение приводящего газового трубопровода
- ✓ Перед наполнением котла отопительной водой проверьте давление в расширительном баке, при необходимости его повысьте
- Убедитесь, что объем расширительного бачка соответствует объему данной системы отопления
- ✓ Заполните систему и котел отопительной водой до достижения предписанного давления (оптимальное давление 1 2 бар)
- ✓ Проверьте плотность соединений системы отопления и котла
- ✓ Измерьте напряжение в розетке, которая предназначена для включения котла (перенапряжение/падение напряжения)
- ✓ Ослабьте головку воздушного клапана
- ✓ В случае, если котел будет эксплуатироваться совместно с комнатным термостатом, проверьте его подсоединение к котлу
- ✓ Откройте привод газа под котлом и включите котел с помощью главного выключателя.
- ✓ Дайте приказ на отопление (посредством комнатного термостата).
- ✓ Проверьте плотность входящего газового трубопровода и системы трубок внутри котла.
- ✓ Проверьте установку мощности котла или наладьте котел согласно рекомендованным величинам.
- ✓ Приспособьте макс. мощность котла, подаваемую в систему отопления, потере тепла в объекте.
- ✓ Проверьте настройку параметров котла.
- ✓ Выпустите воздух из радиаторов и, в случае необходимости, повысьте давление отопительной воды.
- ✓ Ознакомьте обслуживающий персонал с управлением котлом
- ✓ Подтвердите гарантийный талон и пошлите изготовителю акт о вводе котла в эксплуатацию

Минимальные расстояния

